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A

ABSTRACT: This paper presents some mathematical results concerning the measurement of
motion of contours. A fundamental problem of motion measurement in general is that the velocity

field is not determined uniquely from the changing intensity patterns. Recently Hildreth & Ullman
have studied a solution inciple [Hildreth (1983), Ullman
& Hildreth (1983)]. ThatNgdthey formulate the measurement of motion as the computation of the

smoothest velocity field consistent with the changing contour. We analyse this Extremum principle
and prove that it is closely related to a matching scheme for motion measurement which matches
points on the moving contour that have similar tangent vectors. We then derive necessary and
sufficient conditions for the principle to yicld the correct velocity ficld. These results have possible
implications for the design of computer vision systems, and for the study of human vision.
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1. Introduction

The measurement and interpretation of visual motion plays an important part in
artificial and biological vision systems. Mcasurement of motion from the more
primitive data provided by photorcceptors or sensors is a suprisingly difficult
! computational problem, which has attracted much attention in recent years
J [for example, Fennema & Thompson (1979). Ullman (1979). Horn & Schunk
(1981), Hildreth (1983), Nagel (1983); also sce reviews in Thompson & Barnard
(1981), Ullman (1981)}. This mecasurement can take place at different stages in
the analysis of an image, for example. at the levels of (a) raw intensity or (b)
intensity changes or edges. Marr and Ullman [Marr & Ullman (1981)] suggested
that initial motion measurement in the human visual system takes place at the
locations of zero-crossings of the image filtered with the laplacian of a gaussian.
This provides strong motivation for studying motion measurcments of moving
contours. The motion of contours is also of interest in its own right. Direct
comparisons can be made between the predictions of a proposed computation
and psychophysical results indicating the perceived motion. In this paper we
restrict ourselves to such motion.
As a consequence of the Jocal nature of the initial motion measurement
0 only one component of velocity can be obtained directly from the changing
image [Fennema & Thompson (1979), Horn & Schunk (1981)] (it may be
possible, however. to obtain both components at places where the gradient
of the intensity is discontinuous). Marr and Ullman referred to this as the
aperture problem [Marr & Uliman (1981)]. In the case of moving contours
only the component of vclocity normal to the contours can be measured
directly; the tangential component of the velocity field is undetermined. The
computation of the full two-dimensional velocity ficld requires the integration
of local motion mcasurements, cither along the contour or over arcas of the
image. A fundermental theoretical problem for this integration stage is that for
the case of general motion, the velocity ficld is not determined uniquely from
the changing image. Additional constraints arc required to compute a unique
; : velocity field.
! Recently Hildreth and Ullman [Hildreth (1983), Ullman & Hildreth(1983))
' 3 have proposed a solution to the motion measurcment problem based on an
Extremum Principle. For a contour with arc length parameter 8 they suggest
sclecting the velocity ficld v(s) which has the correct normal component and
which minimizes the integral I along the contour

I= /(% . %%)da. (1.1)

@ This corresponds o choosing: the sioothest velocity ficld consistent with the
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changing image. We will refer to this as the smoothness principle. The use of -
smoothness to constrain the velocity field is based on the physical assumption '
that surfaces arce generally smooth, compared with their distance from the
viewer, and therefore generate smoothly varying velocity ficlds when they move.
A formulation of the smoothness constraint in two-dimensions had previously
been proposed by Horn and Schunck [Horn & Schunck (1981)).
In this paper we derive some mathematical consequences of this principle.
In scction (2) we show that there is a close connection between this type of
velocity field computation and one that establishes an explicit correspondence
between points on the contour at diffcrent times, which have similar tangent
vectors. Thus there is a close similarity between the smoothness principle
and “token matching schemes” for motion measurement [Potter (1977) ,Ullman
(1979), Thompson & Barnard (1981)). This is somewhat surprising since the
two approaches formulate the motion measurement problem in different, though
roughly equivalent, ways. Rather than considering the instantancous velocity
field, the token matching approach takes “snapshots” of the contour at different
times. The motion measurcment problem then becomes: given two snapshots
of a contour at different times, how do you match points on the two contours.
In section (3) we derive a necessary and sufficicnt condition for when this
principle yiclds the correct resuit. While the computation of the correct velocity
field may be important for the design of computer vision systems, it should o
be noted that the correct solution is not necessarily the one found by the Q%n
human vision system. In situations where the smoothness principle does not
yield the correct (true) velocity field, it appears that the smoothest velocity
field may be more consistent with human motion perccption. For example,
Hildreth [Hildreth (1983)] shows that the perception of expansion or contraction
when viewing a rotating spiral, the perccived downward motion of a rotating
barberpole. and non-rigid appearance of a rotating ellipse are more consistent
with the smoothest velocity ficld than the true one.

2. Matching Tangent Vectors

The approach based on the Extremum Principle (1.1) mcasures the normal
component of the instantancous velocity and computces a velocity field. Another
approach [Ullman (1979)] to solving the motion mecasurcment problem is. given
two snapshots of the curve, to match points with similar tangent vectors. This
cssentially minimizes local deformation in the contour over time. If we denote
the unit tangent vector by T and take the snapshots at an infinitcsimal time
apart, this is equivalent to minimizing a mcasure J where

J= / (93% . ‘;_f)da. 1)
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We show that there is a close connection between this measure and the one
proposed by Hildreth and Ullman and that they give similar predictions for a
wide range of motions.

Let the image curve be denoted by

r=1(6,1) (22)

Here ¢ is the time and @ is a parametrization of the curve. The velocity
distribution is

o8,1) = 3_§ (2.3)

where the partial derivative with respect to ¢ is taken with @ constant. This
means that the velocity distribution y(f, t) obtained depends on the parameter
6. If we choose another parameter ¥(8,t) in place of ¢ we would get a
different distribution. Solving the motion measurement problem corresponds
to finding a preferred parametrization for the curve. This parametrization will
show which points correspond in different snapshots and hence determines a
velocity distribution.
If s is the arc length of the curve we calculate

dy _ (3s\ oy
63_(6_0) 2 (24)
Using (2.3) we find
2.@_(93)"8_’1.8_’:
ds 8s \30) oot oeat

Thus the smoothness principle is cquivalent to finding the parameter # which
minimizes

(2.5)

s\ "2 9% 9%
/ (a_é) 360t 909" (26)

subject to the obscrved normal velocity.
The unit tangent vector is

s\ or
Differentiating with respect to ¢, we obtain
oT _ (aa)-’ 8%s dr (a.)-l a%r
gt \a88) ataeae + 30) a6at (28)

.....................




Hence

T 8T (aa)-‘( s )261 or +(63)—2 FPr _2(33)—3 s 3% or

......

ot ot \30) \otae) o6 a0 \3e) d6at 9eat \a0 : g)taoaoat'ﬁ'
2.
Now by definition of s we have
as\? 9r or
(%) =2 (2.10)
Differentiating with respect to time we obtain
9r odr Os 6’3)
360t 30 EE(atao : (2.11)
Substituting (2.10) and (2.11) into (2.9) gives
- 9T oT _ («_33)-3 Pr &t _(a,)-ﬁ( 9% )’ (212)
at at. 90) a6ot 6ot a6 ates ) -’ )
We now combine (2.12) and (2.5) and obtain
oy ay 81: az s
91 38 ot +( ao) (213)

30 we see that the smoothness measure can be written as the sum of two terms
both of which are positive definite. The first term mecasurcs the change in the
local tangent vectors at corresponding points on the contour over time, and can
thercfore be minimized by matching points with similar tangent vectors. The
second term is a local measure of how fast the curve is expanding.

Since the right hand side of (2.13) is the sum of two positive terms it will
be small only when both of them are small. The two terms are functionally
dependent, so minimizing their sum is nor cquivalent to minimizing both of
them individually. The sccond term bocomes important in extended arcas
of the contour with zero curvature (here the correspondence between points
with similar tangent vectots is ambiguous). and situations where the contour
is cxpanding and distorting significantly. Note that the mecasures  and J are
integral measures: the minimization of the intcgral is not cquivalent to the
minimization of local changes independcently.

‘The result (2.13) is surprising since it relates two apparently different ways
of modeling the motion of a contour. Note that if the contour is a straight
rigid rod moving in the image plane the tangent measure will be zero for all
possible motions and so will not detenmine a unique motion. We will show
in the next section that the presence of the expansion term mceans that the
smoothness measure will yicld the correct result in this case, provided the
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boundary conditions at the ends of the rod arc known. Further investigation is
needed to find the conditions under which the cxpansion term in the cquation
can be neglected. Examples for which this term is significant may detcrmine
which formulation is more appropriate for human vision.

Equation (2.13) also suggests that some of the nice results of token matching
schemes will also apply to the Extremum Principle (1.1), and can be incorporated
into a motion measurement computation based on it. Suppose, for cxample, that
a contour has cusps, discontinuitics or other easily distinguished points. Most
token matching schemes will match these points between snapshots [Lawton
(1983)]. For example, if the contour is a square the distinguished points are
the vertices and they are matched between snapshots. In particular the tangent
measure (2.1) will tend to match such points since they occur at places where
the derivative along the curve of the tangent vector is a maximum (i.e. the
modulus of the curvature is a maximum). If this maximum is infinite (i.e. if the
contour has a discontinuity) such points must be matched since otherwise the
integral (2.1) will become infinite. This behaviour is confirmed by experiment
and, by (2.13), we expect it to be predicted by the smoothness principle.

3. The Validity of the Smoothness Measure

To test the validity of the smoothness principle for motion measurement, we
can examine the predicted solution for actual moving contours. One method for
obtaining this solution is to specify an algorithm that embodies this principle,
and run the algorithm on a variety of moving contours [Hildreth (1983)]. A
second. more direct method is to apply the Calculus of Variations to (1.1) and
obtain the Euler-Lagrange equations for ¥. The solution of these equations
yields the correct velocity distribution but, as we will show, these equations
are too complicated to be solved in general. There is an alternative way in
which the equations can be used however: we can substitute the correct velocity
distribution and determine whether it is a solution. Thus we can obtain a
simple condition for when the sioothness principle yields the correct velocity
field solution.

Let the curve in the image planc be £ = r(s) and the correct velocity be X.
Note that this is not the same as the cxpression for r in the previous section.
The component of velocity normal to the curve, which we denote by U, is

U=(X NN (3.1)

wherc N is the unit nomrmal to the curve. This component of the velocity is
mecasured directly from the changing image, but the tangential component is
unknown. Denote it by F(s)Z where F is an arbitrary function. Then the full
velocity YV is written
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v= (X N)N+ F(s)I. (3.2)

Before proceeding we recall some results from differential geometry [Faux
& Pratt (1979)). The curve lies in the image planc and hence has no torsion.
The derivatives with respect to the arc length s of the tangent and normal unit
vectors are given by

oT
a—‘. = K& (3.3)
and
oN

where x is the curvature.
We now return to (3.2). Differentiating with respect to s and using (3.3) and
(3.4) we obtain

Oy

2_(Z vz D+ P+ (E -z m)T (9)

We substitute this into the smoothness measure to obtain

dy 9y oX

2 P = [((Z-n-mxm+ F~)2+(% — (X z\_r))z)ds-

(3.6)
We write the integrand of (3.6) as L(F, 4F), a function of F and 4£. By
standard results of the Calculus of Variations [Courant & Hilbert (1953)]
extremizing the intcgral (3.6) is cquivalent to solving the FEuler-Lagrange
equations

oL dfadL
aF — EE(aF.) (&17)
where we use F, to denote 4E. We have
oL (X
5F = 2&(-‘-37 N—«xX-T)+ F‘oc) (3.8)
and
oL oF
B P R L B A R




We differentiate to obtain

D(OL)_,0F _,2 22X 2
aa(aF,) L (Z*— N) 2k—=-N+2x (X-T). (3.10)

Substituting (3.8) and (3.10) into (3.7) gives

PF d ,
3 (x N)— 2~—4 N+23(X -T)—Fx?*=0. (3.11)
This equation is complicated and it is unlikely that it can be solved in general.
Notice, however, that if the image curve is made up of straight lines with «
zero (for example if it is a square) the equation reduces to

@
257 = 0 (3.12)
and can be solved.
Rather than looking for solutions of (3.11) we now ask, under what conditions
do the equations yield the correct solution? (As mentioned in the introduction
it should be emphasized that the human visual system does not always obtain

the correct result). This occurs when the solution of (3.11) is

=(X-T). (3.13)
Using formulae (3.3) and (3.4) we find
oF ax
5 =(Z 1) +mx- (324
and
2
= axm+u( . y)-exn+ x.z. (3.15)
82
Substituting (3.13) and (3.15) into (3.11) we find it reduccs to
2 .
rx. IT=0. (3.16)

s
Thus (3.16) is a necessary and sufficent condition for the measure (1.1) to
yield the correct solution. If the velocity ficld corresponds to uniform translation
or expansion it is clear this condition is satisfied.
Suppose the contour rotates. The velocity ficld can be expressed as

X=uXt (3.17)




‘‘‘‘‘

»
b4
¥
]
‘
’
'

NYED (R
[~ -]

where w is perpendicular to the image planc. Now

1 ¢

S 4
= and substituting this into (3.16) gives
f
3 k(wX N)-T=0. (3.19)
o Since w, N and T are mutually orthogonal, (3.19) holds if and only if & is
.:‘ zero. Thus the smoothness principle only gives correct results for rigid rotation
3 when the curve is made up of straight line segments (with x zero). At the
vertices £ has a discontinuity of delta function type. The boundary condition
this imposes requires that the velocity ficld is continuous at the vertices.
b In fact if the curve is made up of straight line segments, which do not deform,
3 the smoothness principle always yields the correct result. To see this, recall
_ that the velocity of a straight line scgment can be decomposed into rotation,
i translation and expansion components. Equation (3.16) implies that the correct
- rotation and translation components are found and the boundary conditions at
% the ends of the straight line segments ensures the correct expansion component.
7 4. Conclusion

‘ This paper derives two results about the smoothness principle. The first suggests Y 9
X a close connection between it and token matching schemes. The connection with '
: the tangent measure (2.1) is made explicit in (2.13). The second characterizes
' the smoothness principle and obtains a necessary and sufficient condition (3.16)
H for the principle to provide the right answer.

“ These results suggest that algorithms based on the smoothness principle will
‘3: give correct results, and hence be useful for computer vision systems, when (a)
’:’:_;L,. motion can be approximated locally by pure translation, rotation or expansion,
i or (b) objects consist of connected straight lines. In other situations, the
?ﬁ smootness principle will not yicld the correct velocity field. but may yield one
- that is qualitatively similar {Hildreth (1983)}. If the measurement of motion
ﬂ in the human visual system uses the smoothness principle, the results suggest
»~ when the human system should derive the correct solution. This could be tested
by perceptual experiments. Finally different formulations of the principle may
s be uscful for diffcrent purposes. Formulations like (1.1) led straightforwardly
- to a proof of the uniquencss of the result [Hildreth (1983)]. but formulation in
% terms of tangent matching and local cxpansion may lcad to a simpler algorithm. .
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